If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x=24^2
We move all terms to the left:
x^2+10x-(24^2)=0
We add all the numbers together, and all the variables
x^2+10x-576=0
a = 1; b = 10; c = -576;
Δ = b2-4ac
Δ = 102-4·1·(-576)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{601}}{2*1}=\frac{-10-2\sqrt{601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{601}}{2*1}=\frac{-10+2\sqrt{601}}{2} $
| -3(c=1)-4c=60 | | 2(x+3)+2(2x+1)=26 | | 77+6x=11+12x | | 2(4x−11)=102(4x−11)=10 | | (2x+1)=96 | | z-81=0 | | 12x=4/9 | | 12915.22=12000*2.7182^(r*1.17) | | 4(2p)=4(-p) | | 12915=12000*2^(r*2) | | 32+t=1232+t=12 | | 2(-3x+10)=44 | | 0=3r^2-28r+48 | | n/3=16/12 | | 0=3r^-28r+48 | | (1/x-1)+(1/x+2)=7/10 | | 3b+5-1=23 | | (1/3)(440)(440)h=18,069,333.33 | | 9y+4=85 | | c/3-2=9 | | 17-5u=48 | | (6x)+(5x+26)=180 | | (3x-13)=52 | | 1/2(x•2x)=240 | | 8x-9=4x-1. | | 12=16x^2+32x | | 2^p+3+2^p=18 | | (4n-3)^2=0 | | 9v^2-8=-135 | | 2A=+11a | | c+2/4=2 | | -0.25(x-1)=2 |